5 research outputs found

    Definition of a SNOMED CT pathology subset and microglossary, based on 1.17 million biological samples from the Catalan Pathology Registry

    Full text link
    SNOMED CT terminology is not backed by standard norms of encoding among pathologists. The vast number of concepts ordered in hierarchies and axes, together with the lack of rules of use, complicates the functionality of SNOMED CT for coding, extracting, and analyzing the data. Defining subgroups of SNOMED CT by discipline could increase its functionality. The challenge lies in how to choose the concepts to be included in a subset from a total of over 300,000. Besides, SNOMED CT does not cover daily need, as the clinical reality is dynamic and changing. To adapt SNOMED CT to needs in a flexible way, the possibility exists to create extensions. In Catalonia, most pathology departments have been migrating from SNOMED II to SNOMED CT in a bid to advance the development of the Catalan Pathology Registry, which was created in 2014 as a repository for all the pathological diagnoses. This article explains the methodology used to: (a) identify the clinico-pathological entities and the molecular diagnostic procedures not included in SNOMED CT; (b) define the theoretical subset and microglossary of pathology; (c) describe the SNOMED CT concepts used by pathologists of 1.17 million samples of the Catalan Pathology Registry; and d) adapt the theoretical subset and the microglossary according to the actual use of SNOMED CT. Of the 328,365 concepts available for coding the diagnoses (326,732 in SNOMED CT and 1,576 in Catalan extension), only 2% have been used. Combining two axes of SNOMED CT, body structure and clinical findings, has enabled coding most of the morphologies

    REGSTATTOOLS: freeware statistical tools for the analysis of disease population databases used in health and social studies

    Get PDF
    Background: The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLS http://regstattools.net intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease"s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis). Results: We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995-2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000-2004 data with that of 1995-1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000-2004 than in 1995-1999, whereas it was similar among women when these time periods were compared. Conclusions: Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require

    Trends in the surgical procedures of women with incident breast cancer in Catalonia, Spain, over a 7-year period (2005-2011).

    Get PDF
    Abstract Background: Breast cancer (BC) is the most frequent cancer in women, accounting for 28% of all tumors among women in Catalonia (Spain). Mastectomy has been replaced over time by breast-conserving surgery (BCS) although not as rapidly as might be expected. The aim of this study was to assess the evolution of surgical procedures in incident BC cases in Catalonia between 2005 and 2011, and to analyze variations based on patient and hospital characteristics. Methods: We processed data from the Catalonian Health Service's Acute Hospital Discharge database (HDD) using ASEDAT software (Analysis, Selection and Extraction of Tumor Data) to identify all invasive BC incident cases according to the codes 174.0-174.9 of the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) that were attended for the one-year periods in 2005, 2008 and 2011. Patients were classified according to surgical procedures (BCS vs mastectomy, and immediate vs delayed reconstruction), and results were compared among periods according to age, stage, comorbidity and hospital level. Results: BC surgical procedures were performed in more than 80% of patients. Surgical cases showed a significant increasing trend in the proportion of women aged 50-69 years, more advanced disease stages, higher comorbidity and they were attended in hospitals of less complexity level throughout the study period. Similar pattern was found for patients treated with BCS, which increased significantly from 67.9% in 2005 to 74.0% in 2011. Simple lymph node removal increased significantly (from 48.8% to 71.4% and from 63.6% to 67.8% for 2005 and 2011 in conservative and radical surgery, respectively). A slightly increase in the proportion of mastectomized young women (from 28% in 2005 to 34% in 2011) was detected, due to multiple factors. About 22% of women underwent post-mastectomy breast reconstruction, this being mostly immediate. Conclusions: The use of HDD linked to the ASEDAT allowed us to evaluate BC surgical treatment in Catalonia. A consolidating increasing trend of BCS was observed in women aged 50-69 years, which corresponds with the pattern in most European countries. Among the mastectomized patients, immediate breast reconstructions have risen significantly over the period 2005-2011. Keywords: Breast cancer, Incident cases, Hospital discharge dataset, Surgical procedure

    Definition of a SNOMED CT pathology subset and microglossary, based on 1.17 million biological samples from the Catalan Pathology Registry

    No full text
    SNOMED CT terminology is not backed by standard norms of encoding among pathologists. The vast number of concepts ordered in hierarchies and axes, together with the lack of rules of use, complicates the functionality of SNOMED CT for coding, extracting, and analyzing the data. Defining subgroups of SNOMED CT by discipline could increase its functionality. The challenge lies in how to choose the concepts to be included in a subset from a total of over 300,000. Besides, SNOMED CT does not cover daily need, as the clinical reality is dynamic and changing. To adapt SNOMED CT to needs in a flexible way, the possibility exists to create extensions. In Catalonia, most pathology departments have been migrating from SNOMED II to SNOMED CT in a bid to advance the development of the Catalan Pathology Registry, which was created in 2014 as a repository for all the pathological diagnoses. This article explains the methodology used to: (a) identify the clinico-pathological entities and the molecular diagnostic procedures not included in SNOMED CT; (b) define the theoretical subset and microglossary of pathology; (c) describe the SNOMED CT concepts used by pathologists of 1.17 million samples of the Catalan Pathology Registry; and d) adapt the theoretical subset and the microglossary according to the actual use of SNOMED CT. Of the 328,365 concepts available for coding the diagnoses (326,732 in SNOMED CT and 1,576 in Catalan extension), only 2% have been used. Combining two axes of SNOMED CT, body structure and clinical findings, has enabled coding most of the morphologies

    Definition of a SNOMED CT pathology subset and microglossary, based on 1.17 million biological samples from the Catalan Pathology Registry

    No full text
    SNOMED CT terminology is not backed by standard norms of encoding among pathologists. The vast number of concepts ordered in hierarchies and axes, together with the lack of rules of use, complicates the functionality of SNOMED CT for coding, extracting, and analyzing the data. Defining subgroups of SNOMED CT by discipline could increase its functionality. The challenge lies in how to choose the concepts to be included in a subset from a total of over 300,000. Besides, SNOMED CT does not cover daily need, as the clinical reality is dynamic and changing. To adapt SNOMED CT to needs in a flexible way, the possibility exists to create extensions. In Catalonia, most pathology departments have been migrating from SNOMED II to SNOMED CT in a bid to advance the development of the Catalan Pathology Registry, which was created in 2014 as a repository for all the pathological diagnoses. This article explains the methodology used to: (a) identify the clinico-pathological entities and the molecular diagnostic procedures not included in SNOMED CT; (b) define the theoretical subset and microglossary of pathology; (c) describe the SNOMED CT concepts used by pathologists of 1.17 million samples of the Catalan Pathology Registry; and d) adapt the theoretical subset and the microglossary according to the actual use of SNOMED CT. Of the 328,365 concepts available for coding the diagnoses (326,732 in SNOMED CT and 1,576 in Catalan extension), only 2% have been used. Combining two axes of SNOMED CT, body structure and clinical findings, has enabled coding most of the morphologies
    corecore